The Journal of Toxicological Sciences Vol. 44(2019) No. 8 August

Letter

<u>Effective dispersal of titanium dioxide nanoparticles for toxicity testing</u> Kenichi Kobayashi, Hisayo Kubota, Rieko Hojo, Muneyuki Miyagawa

J. Toxicol. Sci., 2019; 44(8): 515-521

Original	Google translation
Currently, protocols for the dispersal of	現在、二酸化チタン(TiO2)ナノ粒子の分
titanium dioxide (TiO ₂) nanoparticles are	散プロトコルは標準化されておらず、しば
not standardized and often yield non-	しば不均一な粒子や液体媒体への不十分な
uniform particles and/or insufficient	分散をもたらします。私たちの研究は、TiO2
dispersal in liquid medium. Our study	ナノ粒子が均一なサイズになるように分散
aimed to improve dispersal so that ${\rm TiO_2}$	を改善し、ナノ毒性試験の信頼性を高める
nanoparticles are of uniform size, making	ことを目的としました。 TiO2 ナノ粒子の
nanotoxicity testing more reliable.	調製を最適化するために、車両、超音波処
Various combinations of vehicles,	理時間、および超音波処理体積のさまざま
sonication durations, and sonication	な組み合わせが評価されました。5つの車
volumes were assessed for optimizing	両のそれぞれをテストしました: 超純水
preparations of TiO_2 nanoparticles. We	(UPW)、0.2%リン酸水素二ナトリウム
tested each of five vehicles: ultrapure	(DSP)、ダルベッコのリン酸緩衝生理食塩
water (UPW), 0.2% disodium hydrogen	水 (PBS)、0.9%生理食塩水 (S)、または
phosphate (DSP), Dulbecco's	0.05%Tween 80 を含む S (ST)。また、2 つ
phosphate-buffered saline (PBS), 0.9%	の超音波処理時間と3つの超音波処理ボリ
saline (S), or S containing 0.05% Tween	ュームを評価しました。各懸濁液は超音波
80 (ST). We also assessed two	処理と遠心分離を受けました。その後、上
sonication durations and three	清を分析しました。粒子サイズは、動的光
sonication volumes. Each suspension	散乱によって測定されました。 UPW およ
underwent ultrasonication and	び 0.2%DSP の P25 ナノ粒子(~100 nm、
centrifugation; the supernatants were	我々の研究で使用された TiO2 ナノ粒子の
then analyzed. Particle size was	タイプ)は効果的に分散されました。ただ
measured by dynamic light scattering.	し、PBS、S、または ST には含まれていま
P25 nanoparticles (~100 nm; the type of	せん。超音波処理の関連する継続時間と体
TiO_2 nanoparticles used in our study) in	積を 0.2%DSP で調べました。各バイアル
UPW and 0.2% DSP were effectively	の 30 分間の超音波処理時間と 10 mL の容

dispersed; however, those in PBS, S, or	量が、分散アッセイで決定された最適な超
ST were not. Relevant duration time and	音波処理条件であると決定されました。こ
volume for sonication were examined	れらの最適な条件下で、超音波または0.2%
with 0.2% DSP. A sonication time of 30	DSP で超音波処理/遠心分離された P25 ナ
min and volume of 10 mL for each vial	ノ粒子は分散したままで、長期安定性を示
were determined to be optimal	しました (90 日間)。このように、毒性試験
sonication conditions as determined with	のために液相分散液で TiO2 ナノ粒子を調
our dispersal assay. Under these optimal	製するための信頼できる手順を開発しまし
conditions, P25 nanoparticles	た。
sonicated/centrifuged in UPW or 0.2%	
DSP remained dispersed and exhibited	
long-term stability (90 days). We thus	
have developed a reliable procedure for	
preparing TiO ₂ nanoparticles in liquid-	
phase dispersions for toxicity testing.	

Original Article

Stephanthraniline A suppresses proliferation of HCT116 human colon cancer cells through induction of caspase-dependent apoptosis, dysregulation of mitochondrial function, cell cycle arrest and regulation of Akt/p38 signaling pathways

Lu Wang, Li Yao, Xiaoyu Li, Juan Chen, Chenghua Lou, Yiqi Wang

J. Toxicol. Sci., 2019; 44(8): 523-533

Original	Google translation
Stephanthraniline A (STA) is a C_{21}	Stephanthraniline A (STA) は、Stephanotis
steroidal aglycone isolated from the	mucronata (Blanco) Merr の茎から分離さ
stem of <i>Stephanotis mucronata</i> (Blanco)	れた C21 ステロイドアグリコンです。それ
Merr. that exerts growth inhibition in	は、ヒト結腸癌細胞で成長阻害を発揮しま
human colon cancer cells. However, the	す。しかし、これが起こる細胞内分子メカ
intracellular molecular mechanisms	ニズムは十分に特徴付けられていません。
whereby this occurs have not been well	この研究では、STA が HCT116 結腸癌細胞
characterized. In this study, we found	の成長を時間と濃度に依存して著しく阻害
that STA significantly inhibits the growth	することを発見しました。細胞増殖に対す
of HCT116 colon cancer cells in a time-	る STA の阻害効果は、アポトーシスの誘導
and concentration-dependent manner.	に関連していた。活性化されたカスパーゼ-

The inhibitory effect of STA on cell	3、カスパーゼ-8 およびカスパーゼ-9 は、
growth was related to the induction of	Bcl-2 / Bcl-x 比の減少およびミトコンドリ
apoptosis. Activated caspase-3,	ア膜電位の喪失 ($\Delta \phi$ m) とともに、STA 処
caspase-8 and caspase-9, along with a	理に応答して観察されました。さらに、
decreased Bcl-2/Bcl-x ratio and loss of	HCT116 細胞を STA で処理すると、サイク
mitochondrial membrane potential	リン依存性キナーゼ 4(CDK4)、p21 およ
($\Delta \; \psi_{\; \rm m}$), were observed in response to	び c-myc の mRNA レベルの低下を伴う G0
STA treatment. Furthermore, treatment	/ G1 期の細胞周期停止が起こりました。さ
of HCT116 cells with STA resulted in	らに、HCT116 細胞での STA 処理後に、Akt
G0/G1 phase cell cycle arrest	シグナル伝達の阻害と p38 シグナル伝達の
accompanied by decreased mRNA levels	活性化が観察されました。これらの発見は、
of cyclin-dependent kinase 4 (<i>CDK4</i>),	STA がアポトーシス、ミトコンドリア機能
p21 and $c-myc$. Additionally, the	の調節不全、および細胞周期停止を促進す
inhibition of Akt signaling and activation	ることにより HCT116 細胞の成長を阻害す
of p38 signaling were observed after	ることを示しています。
treatment with STA in HCT116 cells.	
These findings indicate that STA inhibits	
HCT116 cell growth by promoting	
apoptosis, the dysregulation of	
mitochondrial function, and cell cycle	
arrest.	

Letter

Disulfiram facilitates ataxin-3 nuclear translocation and potentiates the cytotoxicity in a cell model of SCA3

Zijian Wang

J. Toxicol. Sci., 2019; 44(8): 535-542

Original	Google translation
Spinocerebellar ataxia type 3 (SCA3) is	脊髄小脳性運動失調3型(SCA3)は、タン
caused by the expansion of a glutamine-	パク質アタキシン-3 をコードする ATXN3
encoding CAG repeat in the ATXN3 gene	遺伝子のグルタミンをコードする CAG リ
encoding the protein ataxin-3. The	ピートの拡大によって引き起こされます。
nuclear presence of polyglutamine-	ポリグルタミン拡張アタキシン-3の核内存
expanded ataxin-3 is of critical	在は、SCA3 の病因にとって非常に重要で

importance for the pathogenesis of	す。アルコール依存症の FDA 承認薬である
SCA3. Disulfiram, an FDA-approved drug	ジスルフィラムも、がん治療で注目を集め
for alcoholism, has also garnered	ています。しかし、それは神経系に毒性を
attention in cancer treatment. However,	示しています。これを念頭に置いて、アス
it has shown toxicity in the nervous	タキシン-3を発現する細胞をジスルフィラ
system. Bearing this in mind, we treated	ムで処理し、凝集体形成、可溶性アタキシ
cells expressing ataxin-3 with disulfiram	ン-3発現、アタキシン-3の核局在化、およ
to measure several pathogenic cascades	びジスルフィラムの直接効果を評価する細
of SCA3, including aggregate formation,	胞毒性など、SCA3 のいくつかの病原性カ
soluble ataxin-3 expression and nuclear	スケードを測定しました SCA3 セルモデ
localization of ataxin-3 and the	ル。私たちの知る限り、これはジスルフィ
cytotoxicity, which assess the direct	ラムがポリグルタミン拡張アタキシン- 3 の
effect of disulfiram on SCA3 cell models.	核局在化を高め、SCA3 の細胞モデルにお
To our knowledge, this is direct evidence	ける細胞毒性を増強したという直接的な証
that disulfiram elevated the nuclear	拠です。さらに、ジスルフィラムは、少なく
localization of polyglutamine-expanded	とも単回投与でポリグルタミン拡張アタキ
ataxin-3 and enhanced the cytotoxicity	シン-3 の凝集体形成に影響しませんでし
in a cell model of SCA3. Furthermore,	た。我々の発見は、ジスルフィラムの新し
disulfiram did not affect the aggregate	い標的である SCA3 の病状を悪化させるア
formation of polyglutamine-expanded	タキシン-3 核輸送のモジュレーターとして
ataxin-3 at least at a single dose. Our	ジスルフィラムを再利用しています。この
findings repurpose disulfiram as a	研究は、既存の薬物の新規副作用を決定す
modulator of ataxin-3 nuclear transport	る重要な例でもあります。この研究は、こ
that aggravates the pathology of SCA3,	の化合物が SCA3 を引き起こす変異を有す
which is a new target for disulfiram. This	る患者のアルコール乱用または癌の治療に
study also represents an important	使用される場合、注意が必要であることを
example of determining novel side	示唆しています。
effects in pre-existing drugs. This study	
suggests that caution may be warranted	
when this compound is used to treat	
alcohol abuse or cancer in patients	
carrying a SCA3-causing mutation	

Original Article

Human plasma and liver concentrations of styrene estimated by combining a simple

physiologically based pharmacokinetic model with rodent data

Tomonori Miura, Shotaro Uehara, Mayuko Nakazato, Takashi Kusama, Akiko

J.	Toxicol.	Sci.,	2019;	44(8):	543-548
----	----------	-------	-------	--------	---------

Original	Google translation
Long-term exposure to certain volatile	特定の揮発性有機化合物への長期暴露は、
organic compounds is a significant public	公衆衛生上の重大な懸念事項です。ポリス
health concern. A variety of food	チレンまたはポリスチレン関連プラスチッ
containers and drinking cups prepared	クから調製されたさまざまな食品容器およ
from polystyrene or polystyrene-related	び飲用カップには、スチレンモノマーが含
plastics could contain styrene monomer.	まれている可能性があります。現在の研究
In the current study, the concentrations	では、ラットに 25 mg / kg、対照およびヒ
of styrene in plasma and liver were	ト化肝臓マウスに 200 mg / kg を経口投与
surveyed and determined after oral	した後、血漿および肝臓中のスチレン濃度
doses of 25 mg/kg to rats and 200 mg/kg	を調査し、決定しました。ラットの血漿中
to control and humanized-liver mice.	スチレン濃度は、10~25 mg / kg の経口投
Plasma concentrations of styrene in rats	与の2時間後にも検出されました。対照的
were still detected 2 hr after 10-25	に、マウスへのスチレンの経口投与(200
mg/kg oral doses. In contrast, after an	mg/kg)の桁の大きさの後、マウス血漿中
order of magnitude higher oral dose of	のスチレンは検出限界レベルまで 15 分以
styrene (200 mg/kg) to mice, styrene in	内に急速に除去されました。ただし、経口
mouse plasma was rapidly cleared within	代謝の 24 時間後にマウス肝臓に未代謝の
15 min to the limit-of-detection level.	スチレンが検出されました。ラットの血液
However, unmetabolized styrene was	および肝臓のスチレン濃度を推定できる、
detected in mouse liver 24 hr after oral	単純な生理学的薬物動態 (PBPK) モデルが
treatment. A simple physiologically	確立されました。次に、ラットとヒトで同
based pharmacokinetic (PBPK) model	じ内因性肝クリアランスを使用し、ラット
capable of estimating blood and liver	のスチレンの血漿濃度から得られたラット
concentrations of styrene was	パラメータにアロメトリックスケーリング
established for rats. A human PBPK	を適用することにより、スチレンのヒト
model was then set up for styrene by	PBPK モデルを設定しました。 (線量から
using the same intrinsic hepatic	用量への)逆線量測定分析により、1000を
clearances in rats and humans and by	超えるヒト血液サンプルの米国バイオモニ
applying allometric scaling to rat	タリングデータで報告されたスチレン濃度
parameters obtained from the plasma	の 95 パーセンタイル値(0.132 ng / mL)

concentrations of styrene in rats. By	は、 2.89 µg / kg / 日。これらの結果は、ヒ
reverse dosimetry analysis (from	トの血液サンプル中のスチレンバイオモニ
concentrations to doses), we found that	タリングデータが、確立された許容可能な
the 95th percentile values of styrene	毎日の摂取レベルである 7.7 µg/kg/day と
concentrations (0.132 $\text{ng/mL})$ reported	ほぼ同じかそれより低い暴露を意味するこ
in United States biomonitoring data of	とを示唆しています。
more than 1000 human blood samples	
may imply exposure to repeated oral	
doses of styrene of 2.89 $\mu g/kg/day.$	
These results suggest that styrene	
biomonitoring data in human blood	
samples imply exposures roughly similar	
to or lower than the established tolerable	
daily intake level of 7.7 μ g/kg/day.	

Original Article

<u>Gene expression profiles in the dorsal root ganglia of methylmercury-exposed rats</u> Yo Shinoda, Satoshi Tatsumi, Eiko Yoshida, Tsutomu Takahashi, Komyo Et

Original	Google translation
Methylmercury (MeHg) exposure is	メチル水銀(MeHg)暴露は、中枢神経系
known to induce neurodegeneration in	(CNS) と末梢神経系(PNS)の両方で神
both the central nervous system (CNS)	経変性を誘発することが知られています。
and peripheral nervous system (PNS).	MeHg 誘発神経毒性の分子メカニズムは、
Molecular mechanisms of MeHg-induced	CNS でよく研究されていますが、PNS では
neurotoxicity have been well	不明のままです。本研究では、MeHg に暴
investigated in the CNS, however, it	露した成体ラット後根神経節(DRG) を
remains unclear in the PNS. In the	DNA マイクロアレイで分析することによ
present study, comprehensive gene	り、包括的な遺伝子発現分析を実施しまし
expression analysis was performed by	た。塩化メチル水銀(6.7 mg / kg /日)を 9
analyzing MeHg-exposed adult rat dorsal	週齢の雄 Wistar ラットに5日間投与し、そ
root ganglion (DRG) by DNA microarray.	の後2日間投与しなかった。このサイクル
Methylmercuric chloride (6.7 mg/kg/day)	は1回繰り返されました。 MeHg 暴露の開
was administered to nine-week-old male	始後 7 または 14 日目にラットを麻酔し、

J. Toxicol. Sci., 2019; 44(8): 549-558

Wistar rats for five days, followed by two	DRG を取り出してホモジナイズし、トータ
days without administration; this cycle	ル RNA サンプルを作成しました。 7 日目
was repeated once. Rats were	のサンプルからの DNA マイクロアレイデ
anesthetized at 7 or 14 days after	ータは、対照と比較して発現が2倍以上ア
commencement of MeHg exposure, and	ップレギュレートまたはダウンレギュレー
their DRGs were removed and	トされた注釈付き遺伝子として 18,513 個
homogenized to make total RNA	の検出遺伝子のうち 100 個を特定した。注
samples. DNA microarray data from Day	釈、可視化、統合発見のためのデータベー
7 samples identified 100 out of 18,513	ス (DAVID) および遺伝子とゲノムの京都百
detected genes as annotated genes with	科事典 (KEGG) 経路分析は、MeHg にさら
more than two-fold upregulated or	されたラット DRG の免疫活性化と炎症経
downregulated expression compared	路の強い関与を示唆し、一部の遺伝子は以
with controls. Database for Annotation,	前に報告された遺伝子と重複しました小脳
Visualization, and Integrated Discovery	における MeHg 暴露。現在の結果は、MeDR
(DAVID) and Kyoto Encyclopedia of	誘発神経毒性がラット DRG の免疫活性化
Genes and Genomes (KEGG) pathway	と炎症反応に関連していることを示唆して
analyses suggested strong involvement	います。
of immune activation and inflammation	
pathways in rat DRG exposed to MeHg,	
and some genes overlapped with	
previously reported genes affected by	
MeHg exposure in the cerebellum. The	
present results suggest that MeHg-	
induced neurotoxicity is associated with	
immune activation and inflammatory	
responses in rat DRG.	

Letter

LC-MS analyses of *N*-acetyl-*p*-benzoquinone imine-adducts of glutathione, cysteine, *N*-acetylcysteine, and albumin in a plasma sample: A case study from a patient with a rare acetaminophen-induced acute swelling rash

Masashi Ozawa, Takashi Kubo, Seon Hwa Lee, Tomoyuki Oe

J. Toxicol. Sci., 2019; 44(8): 559-563

Original Google translation

Acetaminophen (Paracetamol, APAP) has been widely used for many decades as an analgesic and antipyretic agent but APAP overdose often causes acute adverse reactions, particularly liver damage. The metabolically oxidized form of APAP, N-acetyl-p-benzoquinone imine (NAPQI), is chemically reactive and binds covalently to proteins. Therefore, NAPQI is believed to be the key metabolite that causes hepatotoxicity, especially under conditions of glutathione depletion. Other APAPinduced adverse reactions, such as skin damage, are rare and remain poorly studied. Here, we report a case study of a male patient who presented with an swelling skin acute rash (without hepatotoxicity) caused by therapeutic doses of APAP. Plasma samples were collected at 17 hr after dosing (during the manifestation of symptoms) and at one month (after recovery) and were subjected to LC-MS analysis of NAPQIadducts. A significant concentration of NAPQI-cysteine adduct (33 pmol/mL) found together with was low concentrations of NAPQI-*N*acetylcysteine adduct (2.0 pmol/mL) and NAPQI-glutathione (0.13 adduct pmol/mL). However, the NAPQI-albumin adduct was below the detection limit (below 0.001% modification on albumin) despite a previous report of high concentrations NAPQI-albumin of adduct following acute liver injury.

アセトアミノフェン (パラセタモール、 APAP)は、鎮痛剤および解熱剤として何十 年も広く使用されてきましたが、APAP の 過剰摂取は、しばしば急性の副作用、特に 肝障害を引き起こします。 APAP の代謝酸 化型である N-アセチル-p-ベンゾキノンイ ミン(NAPQI)は化学的に反応性があり、 タンパク質に共有結合します。したがって、 NAPQIは、特にグルタチオン枯渇の条件下 で肝毒性を引き起こす重要な代謝物である と考えられています。皮膚損傷などの他の APAP 誘発性副作用はまれであり、研究が 不十分なままです。ここでは、APAP の治療 用量によって引き起こされる急性腫脹性皮 膚発疹(肝毒性なし)を呈した男性患者の 事例研究を報告します。血漿サンプルを投 与後17時間(症状の発現中)および1ヶ月 (回復後)に収集し、NAPQI付加体のLC-MS 分析にかけました。低濃度の NAPQI-N-アセチルシステイン付加物 (2.0 pmol/mL) および NAPQI-グルタチオン付加物 (0.13 pmol / mL) とともに、かなりの濃度の NAPQI-システイン付加物(33 pmol / mL) が見つかりました。ただし、NAPQI アルブ ミン付加物は、急性肝障害後の高濃度の NAPQI アルブミン付加物の以前の報告に もかかわらず、検出限界以下(アルブミン の 0.001%未満の修正) でした。したがっ て、観察された APAP 誘発性の皮膚損傷は、 APAP 誘発性肝障害とは異なる原因があっ た可能性があります。

Therefore, the observed APAP-induced
skin damage may have had a different
cause from APAP-induced liver injury.

Original Article

Immunohistochemical expression of autophagosome markers LC3 and p62 in preneoplastic liver foci in high fat diet-fed rats

Sosuke Masuda, Sayaka Mizukami, Ayumi Eguchi, Ryo Ichikawa, Misato Nak

J. Toxicol. Sci., 2019; 44(8): 565-574

Original	Google translation
Nonalcoholic fatty liver disease (NAFLD)	非アルコール性脂肪性肝疾患 (NAFLD) は、
is characterized by excessive deposition	肝細胞における過剰な液滴の沈着を特徴と
of droplets in hepatocytes. Patients with	しています。 NAFLD の患者は、肝細胞癌
NAFLD can be at risk for nonalcoholic	につながる非アルコール性脂肪性肝炎のリ
steatohepatitis, which can lead to	スクがある可能性があります。オートファ
hepatocellular carcinoma. Autophagy is a	ジーは、生存と恒常性にとって重要な細胞
cellular pathway that is crucial for	経路であり、肥満や癌などの病態生理学的
survival and homeostasis, and which	変化から保護します。我々は、前癌性肝病
protects against pathophysiological	変におけるオートファジーマーカーの発現
changes like obesity and cancer. We	とオートファジーリプレッサークロロキン
determined the expression of autophagy	(CQ)または脂肪変性関連肝発癌モデルに
markers in preneoplastic hepatic lesions	おける誘導因子アミオダロン(AM)の効果
and the effects of an autophagy	を決定しました。オスの F344 ラットに対
repressor chloroquine (CQ) or inducer	照食または高脂肪食(HFD)を与え、0週目
amiodarone (AM) in a steatosis-related	に N-ニトロソジエチルアミンを注射し、3
hepatocarcinogenesis model. Male F344	週目に部分肝切除を行う開始および促進ス
rats were fed a control diet or high fat	テップを実施しました。2週目と8週目で
diet (HFD), and subjected to initiation	飲料水中の AM が 0.5%。CQ と AM は、
and promotion steps with N-	HFD による肥満を改善しませんでした。
nitrosodiethylamine injection at week 0	AM は CQ ではなく、肝臓のグルタチオン
and a partial hepatectomy at week 3.	S-トランスフェラーゼ胎盤型陽性前腫瘍性
Several HFD-fed rats were administered	肝巣の数を有意に減少させた。オートファ
0.1%~CQ and $0.5%~AM$ in their drinking	ゴソームマーカーLC3 と LC3 結合タンパク
water during week 2 and 8. CQ and AM	質 p62 は、前腫瘍病巣で不均一に発現しま

did not improve HFD-induced obesity. した。 CQ は p62 / LC3 比の大幅な増加に よりオートファジーを阻害する可能性があ AM, but not CQ, significantly decreased りますが、AM はオートファジー制御因子 the number of glutathione S-transferase Atg5の遺伝子発現の増加を示すことにより placental form-positive preneoplastic オートファジーを誘発する可能性がありま liver foci in the liver. Autophagosome す。これらの結果は、前腫瘍性病変がオー markers LC3 and the LC3-binding トファゴソームマーカーを発現し、AM が protein p62 were heterogeneously HFD投与ラットでオートファジーを潜在的 expressed in the preneoplastic foci. CQ に誘導することにより、脂肪変性に関連す might inhibit autophagy by significantly る早期肝発癌を減少させる可能性があるこ increased p62/LC3 ratio, while AM might have a potential of inducing autophagy とを示唆しているが、CQによる自食作用の by showing an increased gene expression 阻害は肝発癌を変化させなかった。ただし、 免疫組織化学的試験では、各前腫瘍病変に of the autophagy regulator, Atg5. These ばらつきがあるため、オートファゴソーム results suggest that preneoplastic マーカーの検出に技術的な限界があること lesions express autophagosome markers and that AM might decrease steatosis-が明らかになりました。 related early hepatocarcinogenesis by potentially inducing autophagy in HFDfed rats, while inhibition of autophagy by CQ did not alter the hepatocarcinogenesis. However, an immunohistochemical trial revealed a technical limitation in detecting autophagosome markers because there were variations in each preneoplastic lesion.